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1 Introduction

Bygone are the days when the single choice to list ones telephone number
afforded practically total privacy. In the modern Internet ecosystem, search
engines, websites and Internet Service Providers (ISP) capture a wealth of
personal data [3]. Due to Senate Joint Resolution 34, 2017, any ISP is
permitted to record and sell consumer browsing activity [17]. The private
browsing modes afforded by the four most popular web browsers are anything
but private and suffer from security vulnerabilities [42].

Both the individual and commercial entity demand a certain level of dig-
ital privacy. At the personal level, more than half of Americans do not
approve of corporate mining of their online data [5]. In an business setting,
if a corporation queries a database for historical bond yields or regarding
a certain patent technology, the database manager may deduce the com-
pany's next financial or scientific strategy [13]. Obfuscation-based private
web search (OB-PWS) is one method that permits freedom of inquiry online
while concealing user preferences.

What is unique about OB-PWS is that it provides a semantic as opposed
to a network solution to private browsing via the generation of strategic false
searches. The goal of the noisy searches is to prevent an adversary from
easily distinguishing a user's actual searches from synthetic ones [35].

The purpose of this study is to review the privacy guarantees of Stephen
Smith's “ISP Pollution” software [12]. The significance of this investigation
is to verify known limitations of data pollution and confirm the properties of
privacy guarantees by noise.

We will explore many of the topics related to preserving privacy when
using services providing broadband Internet access service or online search.
The next section will provide an high level look at digital privacy. Section 3
reviews known issues of networked solutions to privacy. Section 4 provides a
methodology for measuring the privacy guarantees of an OB-PWS. Section
4 explores theoretical grounding for obfusacation mechanisms. Section 5 is a
literature review of noise injection software. In Section 6 and 7, we perform
a machine learning attack on ISP Pollution [12] and present our findings.
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2 Primer on Privacy

In the literature, there is no universal consensus on the formal definition of
privacy. Intuitively, individuals may have substantially different tolerances
to the disclosure of certain aspects of their digital activity [32].

Internet service providers have the capability to classify users by their
activity, interests and preferences. By construction, a web search engine
with the capability to track its usage requires storing user data. In turn,
this data allows developers to produce models to profile behavior in order to
best serve advertiser and user demands [40]. The custom content that users
enjoy as a result of this auditing comes at the cost of privacy [2]. Businesses
are motivated to spend money on services such as Google’s PageRank al-
gorithm to increase their search rankings and advertisement reach to target
demographics [47].

Both the search engine and Internet Service provider possess distinct ad-
vantages as data collection entities. The search engine is privy to a catalogue
of the user’s desire for information via web search. At a minimum, an ISP can
observe encrypted traffic endpoints and thus knows the user’s website activ-
ity. The implementation of advanced techniques degrade encrypted privacy
further [24].

At present, the major online search providers claim to purge or anonymize
their data stores of user queries routinely, but the time frame under which
these deletions occur is dubious[30]. Increasingly, one’s digital footprint re-
veals more than is comfortable. As demonstrated by the Doe vs. Netflix civil
suit, the many streams of digital use are accompanied by serious releases of
sensitive information. In the litigation, it was argued that the movie data
history exposes highly sensitive interests including “sexuality, mental illness,
recovery from alcoholism, and victimization from incest” [46]. In practice,
it is not plausible to expect that Internet-based businesses can provide total
protection to their customers although in theory, server-side guarantees of
privacy would be most robust [32]. Many solutions to protecting privacy
from data mining attacks necessitate networked solutions that are prone to
failure and insider-exploitation.

We present an abstract model to quantify privacy loss in the context of
Internet traffic logging. In this paper, we use the terms obfuscation mecha-
nisms and obfuscator interchangeably. We also consider terms noisy, dummy,
false, and fake equivalent when describing to queries and activity. Let there
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be a user Alice petitioning a series of online activity to a web search engine
observed by an honest-but-curious ISP Eve [6]. We will call the finite se-
quence of her real activity emitted by a fixed device an activity stream. The
digital profile generated by the device’s activity stream will be denoted as A,
a multinomial distribution of elements ai, each representing the allocation
of searches with respect to a semantic category i. By convention, ai ∈ [0, 1]
is calculated as a representation of the fraction of Alice's searches by topic
divided by her total searches [6].

The adversary Eve composes an observed profile A′ from the record of
activity on Alice's device. In effect, the observed profile is not a reflection per
se of the individual(s) using a device, but oftentimes can serve as a strong
enough proxy to raise serious privacy concerns. Because of the increasing
prevalence of encrypted internet traffic, the service provider often cannot
directly observe the contents of Alice's queries. Nevertheless, the quantity,
timing and size of messages, as well as the recipient and sender are available
and exploitable [6].

We note that A has no prescribed topical composition since the topics of
interest will vary by use case. For example, a law enforcement agency would
seek high granularity of categories related to crime while a clothing companys
marketing team would desire categorical information relating to user fashion
trends. WordNet [26], for example, proposes forty-four lexical categories. See
Cheng et al. for more on heuristics for ontological categorization [9].

Individual digital profiles are in fact an ensemble deriving from a cast of
internet-connected devices e.g. laptops, tablet computers, and IoT devices.
For a person’s k internet devices, their composite digital profile A is repre-
sented by a weighted average of finite sequences of queries across k activity
streams {A1, ...,Ak}. In Section 3, we provide a theoretical framework for
understanding privacy guarantees of obfuscators across A.

3 Networked Solutions Obstacles

Crowds [38] was one the first distributed proposals in which nodes pass un-
encrypted traffic randomly within a network until surfacing onto the In-
ternet. Some peer-to-peer designs that followed such as Tarzan[18] and
MorphMix[39] required that all nodes relay and generate throughput with
layered encryption. These systems intend to deliver privacy by anonymity
of the emitted traffic out of the network. Crowds also spawned a successor,
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Figure 1: Threat Model

Hordes [15], that incorporated multicast responses as a privacy mechanism.
Further distributed work would involve layered public-key encryption known
as onion layering. Tor[49] is a mature implementation of a onion-layered
anonymity.

For those users not participating in distributed anonymity systems, when
the Domain Name System (DNS) provided by a broadband internet access
provider is used to convert domain names to IP addresses, the end users pri-
vacy is compromised [12]. Although the full address of the search is unknown,
domain names are enough to reveal significant profile activity. The following
domain name visits, for example: “aidsinfo.nih.gov“, “redcrossblood.org“,
and “doctor.webmd.com“ could suggest a user's concern about their HIV
status.

Many major broadband internet access services record DNS query in-
formation for administrative purposes such as tracking users whose activity
suggests malware infection [43] . From a privacy perspective, publishing do-
main name queries alone to an adversary amounts to significant exposure.
A Virtual Private Network (VPN) serves as an intermediary between ISP
servers and the request destination, partially concealing the final destination
from an ISP observer [14]. Another development that aims to increase the
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privacy of the internet is the increasing adoption of Hypertext Transfer Pro-
tocol Secure (HTTPs) [52]. In our examination of private web search, we
first outline a shortlist of current technical obstacles to digital privacy.

3.1 VPN Pitfalls

In a VPN setting, in which a client trusts a service provider to redirect
traffic blindly, recording the throughput traffic is a treasure trove of private
information. Audits by the VPN host known as “no log” audits are often
sponsored by the company themselves. Worse still, even after such an audit,
logging can ostensibly resume [20]. There is also no guarantee a government
agency will not subpoena the VPN provider to record user data anyway.
Many VPNs are poorly configured, and clients often still defer to their ISP
DNS server in an event known as a DNS leak [20]. Furthermore, correlation
attacks capitalize on the temporal correlations between a web clients inbound
request to a server and the resulting outbound request. Leveraging network
traffic patterns and query distributions, an adversary snooping VPN activity
can execute a correlation attack to infer user queries [8].

3.2 Shortcomings of Tor

At over two million users, Tor is the largest scale privacy enhancement tool
online. The anonymity Tor provides, however, requires higher latency than
direct internet access. Because a majority of Tor nodes are located in Ger-
many, the Tor infrastructure does not at present support true geographic
diversity [25]. In addition to slower Internet speeds, many websites do not
offer full functionality to Tor exit nodes. Even more problematic, many Tor
exit nodes conduct malicious activity on certain ports. Supporting a Tor
node puts the end user at risk to sponsor criminal activity travelling through
her IP address [25]. Tor also has systematic flaws that reduce its privacy
guarantees. Under certain conditions, an adversary can successfully execute
a website fingerprinting attack on Tor [22]. Nasr et al. showed that by com-
mandeering several Tor nodes, an advanced deep learning algorithm could
deanonymize 80% of traffic [31].
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3.3 Lack of ubiquitous encryption

Unencrypted web requests weaken privacy by exposing the user to malicious
scripts or legal corporate actors intending to profile a user's search prefer-
ences. Among the top fifty Alexa sites for news, shopping and health, more
than 85% do not request fully encrypted browsing by default [52]. As of Q3
2018, nearly 21% of the Alexa Top 100,000 websites did not even use HTTPS
[21]. A robustly encrypted Internet would certainly decrease sensitive brows-
ing exposure, but in many cases is not sufficient protection.

An encrypted connection between a web server and client still leaks sen-
sitive metadata. Cai et al [51] demonstrated that these features alone expose
the end user to a website fingerprinting attack. Network operators can train
models to identify web page requests or otherwise infer the traffic contents
[16]. As online encryption continues to become more popular, there will be
monetary incentives to extract as much information from users as possible
to offset the loss of access to more detailed unencrypted data.

The capability of ISPs to observe client traffic and the potential security
leaks of current network privacy solutions suggests that alternative methods
or combinations thereof might be optimally suited for providing digital pri-
vacy. Data obfuscation is a mechanism that does not have the same latent
issues as purely network-based privacy software [28].

4 Queries in the Mist

In a nutshell, data obfuscation is a privacy mechanism that consumes a
sequence of real user queries R and produces a sequence of noisy queries
Q : M(R) ∈ Q for some mapping M . When M modifies a request r before
submitting it to the web, the data obfuscation algorithm incurs a utility loss.
The user’s original searches are no longer sent, but instead modified for the
sake of hiding their intent.

The drawback of such systems is that the result of searching for M(r) may
not contain exactly what the user wants. Conversely, with M(r) = r, there is
a potential for privacy loss because the user’s request is sent “as-is” amidst
the noise in Q. In both cases, the privacy guarantees of data obfuscation
are weaker in principle than networked solutions. Sensitive user activity or
a modified version thereof will still be contained in Q. In conjunction with
networked solutions to privacy, the obfuscator can increase a system’s privacy
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[32].
The upshot of providing privacy by noise injection is that an obfuscator

offers privacy at the cost of increased network traffic and energy consumption
[32]. Ideally, the generation of noisy activity in parallel to user activity does
not produce significant network slowdown [28]. The success of the noise
generated depends on how well an adversary receiving the stream of activity
can parse out real requests from false ones. Precisely measuring the success
of an obfuscation mechanism is a difficult problem, but a differentially private
method is a useful perspective.

4.1 Composition of Differentially Private Obfuscators

Differential privacy is a process whereby accurate statistics are extracted
from a dataset without infringing on individual privacy. The canonical ex-
ample examines the privacy of two databases differing by exactly one row.
Natural extensions include privacy guarantees for k-size groups or protection
across several databases[11]. From machine learning to honest auction bid-
ding, differentially private mechanisms have many applications, one of which
is to quantify the security offered by an online activity obfuscating mecha-
nism. This section intends to outline a theoretical groundwork for modeling
obfuscation mechanisms. The definitions and theorems are a review of the
work of [6] and proofs due to [11]. The differential privacy of an obfuscator
is formulated as follows:

Let r and r′ be sequences of real activity from the universe R of possi-
ble user generated sequences. Let q be a sequence of real and noisy queries
from the universe of possible sequences Q an obfuscation mechanism Ω gen-
erates. Let S be a subset of sequences q. We fix a pair of finite real activity
streams and argue that the output for both is almost equally likely with high
probability.

Definition 1 ε-local differential privacy. An obfuscation mecha-
nism Ω is ε-locally differentially private provided if:

sup
S∈Q,r,r′∈R

[ln
Ω(S|r)
Ω(S|r′)

] ≤ ε (1)

The conventional information theoretic assumptions hold. An obfuscator
is said to be perfectly distinguishable when Ω(S|r) = Ω(S|r′) = 0, and thus
we have ε = 0. Moreover, an obfuscator is perfectly indistinguishable when
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(Ω(S|r) = 0)⊕ (Ω(S|r′) = 0), and thus we have ε =∞. In the former case,
the obfuscator produces an identical distribution given any real query stream
r and r′. In the latter case, one or more qi exist such that qi unequivocally
originates in either r or r′ since the mechanism maps one sequence to a
non-zero distribution that the other sequence maps to zero.

The statement in (1) is also a formulation of the Max Divergence [11] of
S conditioned on r and r′, and has utility as an instrument for hypothesis
testing under a user’s real searches r. The ratio represents the probability
gain ratio of r against r′ as the hypothesized argument for the obfuscation
mechanism. A suitable property of Max Divergence for differential privacy
is that ε ≥ 0.

In the case where an adversary has access to many streams emitted by an
individual, a natural question is whether a privacy obfuscation mechanism
on one activity stream continues to satisfy ε-local differential privacy in spite
of the adversary’s access to other activity streams. Indeed, a differentially
private obfuscator is resilient to post-processing [11].

Theorem 1 Post-Processing. Let Ω(r1) be a ε-locally d.p. obfuscator.
Let B(Ω(r1), r2, ..., rk) be an algorithm taking Ω(r1) as input, as well as other
data.

Proof . Let B be a deterministic function mapping Q → Q′. Fix any
sequences r and r′, and fix any sequence β ⊆ Q′. Let T = {q ∈ Q : B(q) ∈ β}.
We then have:

sup
β∈Q′,r,r′∈R

B(Ω(β|r))
B(Ω(β|r′))

= sup
β∈B(T )
r,r′∈R

Ω(T |r)
Ω(T |r′)

≤ eε

which is what we wanted.
Such a mathematically stringent requirement for the capabilities of Ω may

be from an information theoretic standpoint be intractable. A given activity
stream only containing an permutations of an individual's social security
number, home address and full name, for example, may be infeasible to
mask in practice. Therefore, we provide a relaxation of ε-local differential
privacy as follows to allow for low probability edge cases the obfuscator will
not handle.

Definition 2 (ε, δ)-local differential privacy. An obfuscator is
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(ε, δ)-locally differentially private if:

sup
S∈Q,r,r′∈R

[ln
Ω(S|r)− δ

Ω(S|r′)
] ≤ ε (2)

This inequality is also representative of the δ-Approximate Max Diver-
gence between r and r′. In order to better illustrate the relationship between
the approximate Max Divergence and Max Divergence provides insight to
its meaning. It will be useful to examine another metric known as the sta-
tistical distance of a profile obfuscation mechanism. Intuitively, statistical
distance quantifies the greatest difference between the probabilities that the
obfuscator can assign to any semantic category for two fixed activity streams.

∆(Ω(R),Ω(R′)) := sup
S∈Q,r,r′∈R

|Ω(S|r)− Ω(S|r′)|

By convention, let R and R′ is said to be δ-close if ∆(Ω(R),Ω(R′)) ≤ δ.
In turn, an obfuscation mechanism is (ε, δ)-differentially private for any input
streams R and R′ if and only if there exists a real input stream T such that
T and R are δ-close and Ω(T ) ≤ eεΩ(R′).

Theorem 2 Obfuscation Repetition. Let Ω1 : R → Q1 be a ε1-
locally d.p. algorithm, and let Ω2 : R → Q2 be a ε2-locally d.p. algorithm.
Then their combination, defined to be Ω1,2 : R → Q1 ×Q2 by the mapping:
Ω1,2(r) = (Ω1(r),Ω2(r)) is (ε1 + ε2)-differentially private.

Proof. With S ∈ Q1 ×Q2, fix any r,r’ ∈ R1 ×R2. Then:

Ω1,2(S|(r1, r2))
Ω1,2(S|(r′1, r′2))

=
Ω1(S|r1)
Ω1(S|r′1)

Ω2(S|r2)
Ω2(S|r′2)

≤ eε1eε2

= e(ε1+ε2)

Corollary 1 Let Ωi : R→ Qi be an (εi, 0)-locally d.p. algorithm for i ∈
[k]. Then if Ω[k] : R →

∏k
i=1Qi is defined to be Ω[k](x) = (Ω1(x), ...,Ωk(x)),

then Ω[k] is (
∑k

i=1 εi,0)-locally differentially private.
Corollary 2 It follows from Theorem 2 and Corollary 1 that if Ωi : R→

Qi is an (εi, δi)-locally d.p. algorithm for i ∈ [k] then Ω[k] : R →
∏k

i=1Qi is

(
∑k

i=1 εi,
∑k

i=1 δi)-locally differentially private.
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The increasing value of ε and δ captures the privacy loss incurred from
multiple applications of the same obfuscator on the same query stream.
From the definition of ε-differential privacy, obfuscators compose in a sat-
isfactory manner, admitting straightforward composition. For example, the
composition of three ε-differentially private obfuscation mechanisms is (3ε)-
differentially private. There must be caution taken in selecting the proper δ
such that the exposure afforded by the relaxation is not too great. For many
cases, δ should be worst-case O(

√
n) in order to be less than the sampling

noise, where n is the number of elements in an activity stream [11].
One further relaxation of the privacy obfuscation mechanism is motivated

by the intractability of protecting extremely dissimilar interest distributions.
In Definition 1, any two activity streams must have a bounded indistinguisha-
bility. In Definition 2, we allow for a small probability of failure captured by
δ. A more nuanced view of the obfuscator's privacy performance takes into
account the distance ` between any activity streams r and r′ covered by the
obfuscator. One such measurement tool for ` could be the Jaccard Similarity
[33]. As an example, the user may wish to hide interest in “army fatigues”
or “Halal meats”, but not worry about concealing her alma mater or favorite
movies.

Definition 3 (ε, δ, `)-local differential privacy. An obfuscator is
(ε, δ, `)-locally differentially private provided that all pairs of input sequences
r and r′ such and any subset of S over the range of output sequences Q
satisfies the following inequality:

sup
S∈Q,r,r′∈R

[ln
Ω(S|r)− δ

Ω(S|r′)
] ≤ ε · `(r, r′) (3)

The parameter ` can be viewed as making guarantees for a subset of dis-
tributions of real activity issued. The magnitude of ` does not indicate the
type of obfuscation offered by the mechanism, but it does allow the designer
to quantify the privacy guarantee for a subset of activity streams intended
to be protected with respect to `. Indeed, such “distance-based relaxation
enables designers to navigate trade-offs between a limited budget of resources
for obfuscation (e.g., bandwidth) and privacy” [6].

As outlined in Figure 1, many digital profiles are composed of activity
streams from multiple devices, motivating the quantification of privacy guar-
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antees on the behavior of a differentially private obfuscator across different
activity streams.

Theorem 3 K-Fold Composition In order to guarantee (ε̃, kδ + δ̃, ˜̀)
cumulative privacy loss over k d.p.-mechanisms given δ̃, δ ∈ [0, 1] and ε̃ > 0,
and

ε̃ · ˜̀=

√
2kln(δ̃−1) · ε · `+ (eε·` − 1) · ε · `

each obfuscator should be worst-case (ε, δ, `)-differentially private. Now,
we are able to reason about the privacy degradation contributed by Alice’s
k activity streams. Recalling that randomized response with a fair coin is
ln(3) ≈ 1-differentially private, it is fair to examine the special case in which
ε ∈ [0, 1) and thus, the privacy loss grows in O( 1√

k
), which is a much better

degradation than the one given by Theorem 2 [11]. With Theorem 3 in hand,
we can better understand privacy requirements of noise injection software on
multiple devices owned by one user.

Remark∗ A tight bound for k-fold composition of differentially private
mechanisms was given by [23].

5 Data Obfuscation Software

5.1 Query Perturbation

GooPIR[19] is a mechanism for enhancing query privacy by the injection of
words into user queries matching the search term frequency. By the addition
of several noise words into each search, the system increases the entropy of
the user’s searches. For example, a search for “Samsung” kicks off a lookup
for words having similar popularity of search from a fixed library. If the result
of the search indicates that terms “milk” and “linens” have equal popularity,
the strings are randomly appended to the original search term, resulting in
the submission of “milk Samsung linens” as one search.

From an information theoretic standpoint, the goal of GooPIR is to ensure
that for every real query r, k−1 noise queries are added such that the entropy
H(R) = ln(k) for a real user search sequence R.

The underlying assumption that weakens the efficacy of GooPIR is that
user search terms are uncorrelated. In practice, user behavior is highly
correlated and exploitable for statistical regression. The following exam-
ple {...,“cars governor mint”, “flowers bodyshop corn”, “carburetor boron
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pony”,...} illustrates an activity stream evidently related to automobiles
where noisy information does not help against temporal correlation reverse
engineering. The strategy sacrifices utility for privacy because no untarnished
query can be submitted, so the user’s original desired content may not be
found. Moreover, Internet search frequencies are dynamic, so any frequency
library will decay in accuracy. GooPIR is an obfuscation strategy that relies
on the false premise that the conditional probability of one search to the
next is near-zero. It serves as a ground-zero baseline to compare other query
perturbation tools.

Sánchez et al. [41] quantify a query’s information content and calcu-
late an equivalent version by increasing the abstraction of certain terms.
Concretely, the search “apples basketball” might be transformed into “fruit
sports” via association in established semantic hierarchy libraries such as
OpenNLP Maxent or WordNet. The mechanism is given by three steps: (i)
syntax analysis over on the unfiltered query in order to break each noun into
its semantic unit (ii) in order to capture the most information-rich elements
of the query, the information content of each semantic unit is calculated and
evaluated vis-à-vis other semantic units (iii) the final step deploys a linguistic
hierarchy database to generate semantically similar queries modulo a config-
ured privacy parameter. Namely, the greater semantic distance between the
original query and the new query, the greater privacy achieved.

The natural question that Sánchez aims to answer is to what extent
the ontological reduction modulo the privacy parameter diminishes utility
of search. In order to measure the success of a transformed search, Sánchez
et. al calculate the information content as the fraction of web hits of the
original divided by the magnitude of all web hits possible. The utility of
the search mechanism, then, is derived from the change in the information
content between the original and distorted queries. They find their tool has
high utility, but is slow in practice.

PrivacySearch [40] requires that ontology categorization happens on-
the-fly. This OB-PWS is a query perturbation mechanism that generates
privacy through an ontological mechanism. Namely, an algorithm known as
PrivacySearch employs WordNet as a hierarchical natural language catego-
rizer [26] to reduce words into their ontological root. Next, all permutations
of the ontological roots are computed and quantified with respect to the orig-
inal query by measuring the mutual amount of existing hyperonyms. The
reduced query in the permutation with the least distance to the original is se-
lected and submitted. Ginés underscores that ontological query perturbation
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is often too slow to be practical.
Transforming a real query into a semantically similar, but reduced query

is often computationally costly. Moreover, it is hard to guarantee that the
product of such computation will yield the desired search results online. Most
crucially, pure semantic reduction cannot offer sufficient privacy and utility
simultaneously [40].

Distortion Search [29] is similar to TrackMeNot, but implements a
different heuristic for producing false queries. Mivule presents a a universe
of five elemental query types: that are used to systematically obfuscate the
real query.

The steps are as follows: (i) a query is distilled into its ontological root
words (ii) if any verbs appear in the query, they are piped into further process-
ing (iii) verbs that are one or two degrees separated from the root verbs are
generated (iv) Highly visible dummy keywords that would return highly rele-
vant search results are identified (v) The original query and resultant dummy
keywords are categorized into one of five classes: informational, transactional,
natural language, temporal and navigational. (vi) Permutations of the query
types are generated from steps (i-iv) (vii) A batch of searches is executed
based on concatenating of subset of the permutations in (vi).

Discretionary click-through was performed for a subsample of the search
queries with the goal of simulating a user’s single interest in “purchasing
a Toyota” [29]. As a result, the noisy queries generated significant change
in targeted ads within a week’s time with 93% of advertisements no longer
related to the simulated user profile. The classification universe was intended
to maintain a certain level of relevance with respect to the original search.
Distortion Search also showed an improvement on TrackMeNot, but a more
systematic look is required since the machine learning learning was trained
on less than five hundred of the over 600,000 query rows [4].

5.2 Query Pollution

Noise Injection for Search Privacy Protection[53]
Ye et al. provide an information-theoretic lower bound for the expected

number of false queries to achieve plausible deniability from a search engine
adversary. The paper proposes minimizing the mutual information, defined
as the intersection of the entropy of an activity stream and the entropy of
the same activity stream injected with noise queries. Selecting the right kind
of noise is hard, but given the right kind of noise, a server side observer



5 DATA OBFUSCATION SOFTWARE 14

cannot distinguish between real and false queries. The framework of mutual
privacy allows for total plausible deniability given a search mechanism emits
a sufficient number of false activity.

Formally, if the probability that a real activity |Qu| is emitted by an
obfusactor is ε, the expected noise queries Nq required for perfect protection
is given by the tight bound:

E(|Qn|) =
1− ε
ε
|Qu| ≤ (Nq − 1)|Qn|

Given enough noise, it is theoretically possible to offer high degree of pri-
vacy. Another result of Ye’s paper is that fewer noise calls are necessary if
the noise depends on the distribution of the user’s searches, but no imple-
mentation is given for such a solution as it would require a method for locally
categorizing user activity.

TrackMeNot [50] is a web browser extension that uses a customizable
RSS feed to generate dummy queries based on trending keywords. The
queries are generated by sampling tokens from article titles listed in the
RSS feed. In addition to the option to adjust the RSS feed, the software pro-
vides users the options to adjust the frequency at which the dummy queries
are submitted, including a “Burst Mode” that produces a high volume of
activity intermittently. Nevertheless, the semantics of these false queries are
susceptible to natural language processing attacks.

If the RSS feed is known beforehand, TrackMeNot offers significantly
reduced privacy [6]. Richard Chow et al. showed that the timing of the
dummy query generation also increased an attacker’s ability to separate real
from fake queries [10]. Petit et al. [34] leveraged a similarity metric to the
Urls generated by RSS seed links to classify TMN noisy Urls with greater
accuracy than pure machine learning techniques.

Smith’s ISP Pollution ISP Pollution is based on an information theo-
retic argument that with sufficient quantity of noise, users will enjoy increased
privacy from an ISP observer. The process begins by downloading words sam-
pled from a random word bank and initializing a set of biasing links rich in
links to popular sites. As a precautionary measure, the algorithm downloads
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the Shalla Black list [44] to filter which sights can be viewed.

Algorithm 1: ISP Data Pollution

input: B : set of blacklisted domains
u ← randomQuerySeed() ;
u ← biasLinks();
while true do

if U(0,1) < 0.005 then
resetuseragent();

if u.linkcount < 2000 then
u ← u ∪ randomQuerySeed();
u ← u ∪ biasLinks();

url = drawRandom(u);
if url 6∈ B then

goTo(url);
u ← u ∪ randomSampleLinksFrom(url);

sleep(χ2(1/2, 1/5) seconds);

First, the biasing links are added to a cache of seed Urls. While the
number of seed Urls is less than two thousand, the word bank is used to
generate seed queries. The queries are fed into one of four search engines:
Yahoo!, Google, Bing and DuckDuckGo with a uniform probability. A sample
of the outgoing links returned by the query are then added to the seed Urls.
The pollution continues at every step popping off a link randomly from the
cache until the cache exceeds two thousand. So long as the cache size exceeds
two thousand, the search engines are not queried by the word bank again.
For every Url, the crawler scrapes a subsample of all links returned by upon
visiting and adds the links to the ongoing cache. The algorithm is given by
ISP Pollution

Because this mechanism is the subject of our experiments, we present a
deep dive into other details involved in spoofing the polluted activity user
agent. As an example, the following header is used to spoof Safari use on an
iPad. “The ’Mozilla/5.0 (iPad; CPU OS 6 1 like Mac OS X) AppleWebKit/

536.26 (KHTML, like Gecko) Version/6.0 Mobile/10B141 Safari/

8536.25”
Other features such as DoNotTrack (DNT) requests, operating system,

personal computer and touch cabale parameters modulate the polluted activ-
ity given in Table 1. Smith suggests that advanced users tailor the parameters
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according to household usage rates. Logging a Wi-Fi router to collect such
statistics is outside the scope of this paper.

DNT True: 0.8
False: 0.2

OS ’Mac *OS’: 3, ’iOS’: 6,
’Linux’: 1, ’Windows’: 1,

’noneoftheabove’: 1
is pc True: 4

False: 6
is touch capable True: 6

False: 4

Table 1: browser params

By design, this mechanism will fail to protect a user actively trying
to engage with online material contained in the following blacklisted cate-
gories: downloads (filesharing, p2p, wallpapers and torrent), drugs, hacking,
gamble, porn, spyware, updatesites (utility download hosting for vendors),
urlshortener, violence, warez (cracked software) and weapons [44].

A summarizing table for Section 5 and 6 is found in Appendix A. In
the next section, we examine the capacity of an adversary to correctly parse
the false output of the ISP Pollution software embedded in a user’s activity
stream.

6 Methodology

Many data obfuscation mechanisms privacy guarantees for protecting user
queries or online activity. ISP Pollution is a mechanism that by virtue of its
query mechanism in effect makes privacy claims for both categories. Since
seed links are generated through Google and co., user queries in the activity
stream visiting major search engines produced by this mechanism are either a
product of genuine user activity or randomized word search. We examine the
theoretical result of Ye et al. through the lens of a Logistic Regression with
L2 normalization on queries generated by AOL users and queries generated
by ISP Pollution. Modulating the amount of noise with respect to the user
queries, F-score and accuracy are compared.
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In the second experiment, we train a Logistic Regression with L2 normal-
ization on the domain name activities of AOL users and the ISP Pollution
generated websites. We extract features from the text of each domain using
a word segmentation algorithm as well as an n-gram set [7].

6.1 Data Sets

The AOL search keywords dataset released in 2006 is often used in bench-
marking tests of obfuscator efficacy to simulate real user searches [4]. The
release of this data became the subject of a class action lawsuit as a result
of the privacy exposure caused by only anonymizing the users identity [27].
Although contemporary internet usage has notable differences, many search
behaviors are still the same as they were in 2006. Another argument for its
utility is that sensitive searches relating to taboo content are presented un-
filtered e.g. “nude celebrity images′′, “lexapro not working after 2 weeks′′ &
“how to kill and not get court′′ . In its entirety, the dataset contains nearly
twenty million entries for over 650,000 users collected from March 1 to May
30 in 2006. The columns are as follows:

1. AnonID - anonymous user identifier

2. Query - search terms entered by the user with some special characters
removed

3. QueryTime - a timestamp for the query submission

4. ItemRank - the rank of the search result clicked, if clicked

5. ClickURL - the forwarding URL domain, if clicked

Although temporal correlation attacks on query identification may work
in principle, [32] finds no significant utility in the temporal information of
the AOL data set, so we drop the QueryTime column. We do not at present
have the ItemRank information for the ISP Pollution data, so we drop it as
well.

Some users in the AOL dataset have too few searches to properly ana-
lyze. In this special case, we consider these users highly amenable to make
use of obfuscation techniques. Users with fewer than twenty searches have
been ommitted for analysis, and the remaining users divided into quintiles
partitioned on users possessing queries in the quintiles {29, 45, 73, 142} from
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here on known as AOLQ1, AOLQ2, AOLQ3, AOLQ4 and AOLQ5. Our view
of the cold-start problem will partition user activity based on a chronological
threshold [47]. We foist each user into the following scenario with respect to
ISP Pollution deployment: after two months on the internet, the user kicks
off ISP Pollution. Therefore, we partition the training and test data with
respect to the start of May 1, 2006. Furthermore, we did not consider users
with fewer than five entries in either the test or training periods.

The ISP Pollution dataset is composed of two columns. The first column
contains urls accessed, and the second are timestamps logged by ISP Pollu-
tion v2.0.1 over the course of a week. See Figure 2 for a sample of the hourly
throughput incurred by running the program.

Figure 2: Sample Hourly Throughput

6.2 Adversaries and Threat Models

We consider two adversaries in our experiments: the search engine host and
internet service provider.

The search engine adversary has access to search queries and ClickURL
but not activity after the outgoing link. We note that DuckDuckGo[1] in
principle does not track user queries, but for the purpose of analysis, we
assume all click through activity originates from a non-private search engine.

ISP Pollution does not perform many searches relative to its url requests.
In the AOL dataset, 38.30% of queries involved click-through as opposed to
13.43% in the ISP Pollution data set.

In order to retrofit the AOL data to the ISP Pollution data, we now
assume that the search engine distribution in the AOL data equals that of the
ISP Pollution. Therefore, every URL search will be uniformly transformed
from an AOL search to a Yahoo!, Google, Bing or DuckDuckGo search.
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The ISP adversary cannot make a distinction beforehand between client-
side HTTP requests and real user activity. Although the ISP adversary does
not have direct access to web page contents, it keeps track of the domain
names accessed. Comparatively, the ISP Pollution algorithm has a higher
output of direct link visits than the AOL data set. Since the ISP adversary
knows in principle just the domain name visited by user, the query-only activ-
ity from the AOL data set is at a baseline interpreted as aol.com. Therefore,
we consider only the domain names from AOL ClickUrl column.

In both scenarios, we trained a binary classifier on equal partition of AOL
and ISP Pollution data for 500 AOL users. Next, we tested the classifier on
varying ratios of ISP Pollution noise relative to the amount of user data,
given by N1, N2, N5, N10, N20.

7 Results

Our results indicate that privacy diminishes almost monotonically on in-
creasing quintiles. Accuracy naturally increases as the noise ratio increases as
more and more activity is correctly identified as false relative to the real activ-
ity. Initial findings determined that the out-of-the-box RandomTreeClassifier
and SupportVectorMachine were suboptimal at this classification problem.

For the search engine adversary, we demonstrate that the noise added by
ISP Pollution does not degrade a classifier’s ability to identify user queries.
We encounter a powerful structural flaw in the ISP Pollution algorithm ev-
idenced by these results. The twenty-to-one noise to real ratio suggested is
not sufficient enough to lower the F-score of a search engine adversary. In
the literature, a fundamental weakness of TrackMeNot arises if the adversary
knows the user’s RSS feed that generates the dummy searches. By the same
token, if the wordbank generating the searches is known, the efficacy of the
search noise drops even further. To optimize the privacy utility, we recom-
mend switching the default search engines to a customized blend of searches
via DuckDuckGo [1], Searx [45] and Qwant [37] instead.

For the ISP adversary, we confirm the theoretical work in [53] empirically
by showing that increasing noise of user queries decreased the fraction iden-
tified in the polluted activity stream. Moreover, we affirm the findings in [7]
suggesting that the English word substrings of a Url have strong predictive
power. Overall, n-gram Url features were best at distinguishing real from
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Figure 3: Adversary F-Score Against Noise

false activity, but in the N20 category performed slightly worse than word
segmentation for AOL5.

8 Discussion

This paper examines a recent open-source solution to privacy protection via
data pollution and verifies known limitations of naively constructed network
noise to defend against an honest-but-curious adversary. In addition, we
summarize theoretical frameworks for differentially private obfuscation.

Without proper regular expressions, Smith’s data polluting agent has the
potential to engage with malicious content. While aggregating the dataset
for ISP Pollution, average cumulative size of files downloaded per hour was
70MB including pdf, executable, compressed and spreadsheet formats. It is
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not assumed that the ISP crawler will avoid downloading potentially ma-
licious files, yet by avoiding downloading these files, the user behavior on
downloads will not be properly masked. More sophisticated attacks may
better identify real queries with exogenous data about websites or queries.
Temporal correlation attacks also have the potential to better filter dummy
activity.

Data obfuscation as a privacy preserving mechanism hides user activity
in plain sight. Therefore, by preventing the web crawler from accessing il-
licit or illegal websites, this obfuscation software can make no guarantees
about protecting certain types of sensitive online activity. Nevertheless, the
underlying principle given by Ye et al. that from an information-theoretic
standpoint, sufficient noise can offer plausible deniability. The bottom line is
that the blacklist underscore a shortcoming of the semantic approach to digi-
tal privacy: all activity, fake or otherwise, will be published to the adversary’s
view.

Data obfuscation also faces adoption challenges in the cyber-security tech-
nology sphere. By design, privacy guaranteed by polluting networks is an
antagonistic method when compared to networked privacy solutions such as
Crowds, Tor and virtual proxy networks.

Future work in quantifying differentially private obfuscation mechanisms
on empirical semantic categories is needed to evaluate the practicality of
protecting users in the wild by testing known mechanisms and tuning re-
laxation hyperparameters. Systems such as Privacy, Efficient, and Accurate
Web Search (PEAS)[35] have already suggested the potential of obfuscation
mechanisms as cyber-security tool. The strategic transmission of digital noise
has promising functionality as a privacy-enhancing primitive for the stealth
community.
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Figure 4: Appendix A: Privacy Mechanism Shortlist
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