
Gram-Schmidt Orthonormalization Process

Given a set of linearly independent vectors {v1,v2, . . . ,vk}, the Gram-Schmidt
process constructs an orthonormal set {e1, e2, . . . , ek} using the following pro-
cedure:

e1 =
v1

∥v1∥
For each subsequent vector vi, subtract the projections onto the already

constructed orthonormal vectors e1, . . . , ei−1, and normalize:

ei =
vi − proje1

(vi)− · · · − projei−1
(vi)

∥vi − proje1
(vi)− · · · − projei−1

(vi)∥

Where the projection of vi onto a vector ej is given by:

projej
(vi) =

(
⟨vi, ej⟩
⟨ej , ej⟩

)
ej

Geometric Interpretation

The Gram-Schmidt process can be viewed as constructing orthogonal vectors
step by step. The key idea is to iteratively remove the components of the vector
that are parallel to the previously constructed orthonormal vectors.
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Step 1: Orthogonalization
Step 2: Normalization

Proof Outline

1. **Start with linearly independent vectors**: Assume {v1,v2, . . . ,vk} is a
set of linearly independent vectors in an inner product space.

2. **First vector**: Set e1 = v1

∥v1∥ , which is clearly normalized.

3. **Inductive step**: Suppose we have constructed the orthonormal vectors
e1, . . . , ei−1. Define the projection of vi onto the span of {e1, . . . , ei−1} as:
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projspan(e1,...,ei−1)(vi) =

i−1∑
j=1

⟨vi, ej⟩ej

4. **Construct ei**: Define the vector v′
i = vi − projspan(e1,...,ei−1)(vi).

This vector v′
i is orthogonal to all previous ej ’s. Normalize v′

i to get:

ei =
v′
i

∥v′
i∥

5. **Orthonormal set**: By construction, the vectors e1, e2, . . . , ek are
orthonormal.

Proof of the Cauchy-Schwarz Inequality

Let u,v be vectors in an inner product space. We wish to prove the Cauchy-
Schwarz inequality:

|⟨u,v⟩| ≤ ∥u∥∥v∥

Proof:
Consider the following expression:

∥u− tv∥2 ≥ 0 for all real t

This inequality holds because the squared norm of any vector is always non-
negative. Now, expand the left-hand side:

∥u− tv∥2 = ⟨u− tv,u− tv⟩

Using the properties of the inner product, this expands to:

= ⟨u,u⟩ − 2t⟨u,v⟩+ t2⟨v,v⟩

= ∥u∥2 − 2t⟨u,v⟩+ t2∥v∥2

Since ∥u− tv∥2 ≥ 0, this quadratic expression in t must be greater than or
equal to zero for all values of t. Therefore, the discriminant of the quadratic
equation must be non-positive. The discriminant of the quadratic is:

∆ = (−2⟨u,v⟩)2 − 4 · 1 · ∥v∥2∥u∥2

Simplifying:

∆ = 4⟨u,v⟩2 − 4∥v∥2∥u∥2

For the discriminant to be non-positive, we must have:

4⟨u,v⟩2 ≤ 4∥u∥2∥v∥2
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Dividing both sides by 4:

⟨u,v⟩2 ≤ ∥u∥2∥v∥2

Taking the square root of both sides:

|⟨u,v⟩| ≤ ∥u∥∥v∥

Thus, we have proven the Cauchy-Schwarz inequality.

Grover’s Algorithm: Overview and Connection
to Gram-Schmidt and Cauchy-Schwarz Inequal-
ity

Grover’s algorithm is a quantum algorithm designed to search an unsorted
database or solve a black-box search problem with quadratic speedup compared
to classical algorithms. It works by iteratively amplifying the amplitude of the
target state, where the solution is encoded. In this explanation, we will show
how the algorithm connects to two key mathematical tools:

1. Gram-Schmidt Orthonormalization – to explain the iterative process
of rotating quantum states.

2. Cauchy-Schwarz Inequality – to quantify the change in amplitudes
during each iteration and provide insight into the algorithm’s performance.

Key Ideas in Grover’s Algorithm

1. **Initial State**: Start with a quantum superposition of all possible states
in the computational basis {|0⟩, |1⟩, . . . , |N − 1⟩}, where N = 2n is the total
number of possible states. The initial state is given by:

|ψ0⟩ =
1√
N

N−1∑
x=0

|x⟩

2. **Oracle**: The oracle O marks the solution by flipping the phase of the
target state:

O|x⟩ = (−1)f(x)|x⟩

where f(x) = 1 for the solution state x (the marked state), and f(x) = 0 for
all other states.

3. **Amplitude Amplification**: Grover’s algorithm repeatedly applies the
**Grover operator**, which consists of two operations: - **Oracle Applica-
tion**: Apply the oracle to flip the phase of the target state. - **Diffusion
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Operator**: The inversion about the average operation amplifies the probabil-
ity of the marked state.

The Grover operator G is given by:

G = (2|ψ0⟩⟨ψ0| − I)O

The algorithm applies G repeatedly to amplify the amplitude of the target
state. After approximately π

4

√
N iterations, the state |ψ⟩ is close to the marked

state |s⟩.

Mathematical Framework: Grover’s Algorithm
and Gram-Schmidt

We can view Grover’s algorithm as iteratively projecting the initial quantum
state onto a subspace that contains the target state, while maintaining the
orthogonality of the quantum states in the process. The quantum state evolves
in a two-dimensional subspace spanned by |ψ0⟩ and the solution state |s⟩.

In this context, **Gram-Schmidt orthonormalization** helps explain the
iterative process of rotating the quantum state towards the target state |s⟩. At
each iteration, the quantum state is adjusted to maintain the correct amplitudes
while avoiding interference with non-target states.

We can define two subspaces: - Ssolution: The subspace corresponding to the
marked state |s⟩. - Snon-solution: The subspace corresponding to all other states.

The Grover operator acts to rotate the initial state |ψ0⟩ towards |s⟩, similar
to applying an iterative Gram-Schmidt process. The operation increases the
projection of |ψ0⟩ onto the subspace Ssolution, while maintaining orthogonality
with the non-solution subspace.

Mathematical Framework: Using the Cauchy-Schwarz
Inequality

The Cauchy-Schwarz inequality provides a way to measure the change in the
amplitude of the solution state after each Grover iteration. Suppose that after
k iterations, the quantum state is |ψk⟩. We can express the probability of
measuring the solution state |s⟩ as:

Psolution = |⟨s|ψk⟩|2

Let’s define u = |ψk⟩ and v = |s⟩ as vectors in the Hilbert space. The
Cauchy-Schwarz inequality tells us that:

|⟨s|ψk⟩|2 ≤ ∥|s⟩∥2∥|ψk⟩∥2 = 1 (since both are normalized states)

The amplitude of the solution state after each iteration depends on the
inner product between |ψk⟩ and |s⟩. Grover’s algorithm iteratively increases this
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inner product by applying the Grover operator, ensuring that the probability of
measuring the target state grows over time.

At each step, the quantum state moves closer to |s⟩ in the sense of the
projection of the initial state onto the solution subspace. The inner product
⟨s|ψk⟩ quantifies this distance, and the amplitude amplification step ensures that
this distance increases, eventually resulting in a high probability of measuring
the solution.

Connecting Gram-Schmidt and Cauchy-Schwarz
with Grover’s Algorithm

- **Gram-Schmidt Parallel**: The process of rotating the quantum state to-
wards the solution state can be viewed as an application of Gram-Schmidt or-
thonormalization. The quantum state is iteratively adjusted by subtracting out
components in the subspace orthogonal to the solution state, thus increasing
the component in the solution subspace. This orthogonalization process en-
sures that the algorithm avoids interference from non-solution states.

- **Cauchy-Schwarz**: The Cauchy-Schwarz inequality is essential to under-
standing the effectiveness of Grover’s algorithm. It guarantees that the inner
product |⟨s|ψk⟩| (the amplitude of the solution state) does not exceed 1 and
provides a way to track how the amplitude grows with each iteration. By itera-
tively amplifying the amplitude of the target state, Grover’s algorithm achieves
a quadratic speedup over classical search algorithms.

Conclusion

Grover’s algorithm leverages the concepts of **Gram-Schmidt orthonormaliza-
tion** to iteratively rotate the quantum state towards the solution subspace and
uses the **Cauchy-Schwarz inequality** to quantify the amplitude amplification
process. The combination of these tools helps us understand the mathematical
foundation of Grover’s algorithm and why it provides a quadratic speedup for
unstructured search problems.
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